Skip to Content
Lynkr is now in Open Beta 🎉
Python SdkBuild your Agent

Build your Agent

Install the SDK

Set up your Python project, ideally with a virtual environment, and install the necessary libraries:

pip install lynkr langchain_openai langgraph python-dotenv

Initialize the Client

Ensure you have a .env file in your working directory with your API keys:

LYNKR_API_KEY=your_lynkr_api_key RESEND_API_KEY=your_resend_api_key OPENAI_API_KEY=your_openai_api_key

Then, initialize the Lynkr client:

import os from dotenv import load_dotenv from lynkr import LynkrClient load_dotenv() lynkr_client = LynkrClient(api_key=os.getenv("LYNKR_API_KEY"))

Add Service Credentials (Optional)

If the service you’re using (e.g., Resend) requires authentication, add the credentials to your Lynkr client:

lynkr_client.add_key( service="resend", header="x-api-key", api_key=os.getenv("RESEND_API_KEY") )

Set Up LangChain and LangGraph Integration

Set up the integration with OpenAI and LangChain for advanced orchestration:

from langchain_openai import ChatOpenAI from langchain_core.messages import HumanMessage, AIMessage, SystemMessage from langgraph.prebuilt import create_react_agent # Retrieve Lynkr tools tools = lynkr_client.langchain_tools() # Initialize OpenAI model model = ChatOpenAI( api_key=os.getenv("OPENAI_API_KEY"), model="o4-mini", temperature=1 ) # Create ReAct agent with Lynkr tools agent = create_react_agent( model=model, tools=tools )

Usage Example

Use the agent to interactively fulfill user requests using Lynkr:

prompt = """ You are LynkrGPT, an agent that fulfills user requests by orchestrating two tools: IMPORTANT: Always start by invoking the get_schema tool with the user request unless already obtained. 1. get_schema(request_string: str) - Example: "create an opportunity" 2. execute_schema(schema_data: dict, ref_id: str, service: str) Always: - Verify if you already have the schema; do not request again if you do. - Use execute_schema after filling in required details from the schema_example. - Respond with confirmation or request clarification if needed. EXAMPLE FLOW: 1. User: "I want to create a contact in HubSpot" 2. get_schema("create a contact") 3. Obtain schema_example, ref_id, and service 4. Ask user for required details 5. Execute filled schema_example 6. Confirm success to user Begin! """ response = agent.invoke("I want to send an email") print(response)

Next Steps

Your Lynkr client is now ready to use. Proceed with:

  • Exploring additional Lynkr tools

  • Learning more about advanced usage scenarios

Last updated on